A short elementary proof of the Lagrange multiplier theorem

نویسندگان

  • Olga Brezhneva
  • Alexey Tret'yakov
  • Stephen E. Wright
چکیده

We present a short elementary proof of the Lagrange multiplier theorem for equality-constrained optimization. Most proofs in the literature rely on advanced analysis concepts such as the implicit function theorem, whereas elementary proofs tend to be long and involved. By contrast, our proof uses only basic facts from linear algebra, the definition of differentiability, the critical-point condition for unconstrained minima, and the fact that a continuous function attains its minimum over a closed ball.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new proof of the Lagrange multiplier rule

We present an elementary self-contained proof for the Lagrange multiplier rule. It does not refer to any substantial preparations and it is only based on the observation that a certain limit is positive. At the end of this note, the power of the Lagrange multiplier rule is analyzed.

متن کامل

A SHORT PROOF FOR THE EXISTENCE OF HAAR MEASURE ON COMMUTATIVE HYPERGROUPS

In this short note, we have given a short proof for the existence of the Haar measure on commutative locally compact hypergroups based on functional analysis methods by using Markov-Kakutani fixed point theorem.

متن کامل

Groups with one conjugacy class of non-normal subgroups‎ - ‎a short proof

For a finite group $G$ let $nu(G)$ denote the number of conjugacy classes of non-normal subgroups of $G$. We give a short proof of a theorem of Brandl, which classifies finite groups with $nu(G)=1$.

متن کامل

Optimal control of age-structured systems with mixed state-control constraints

The paper deals with a general optimal control problem for age-structured systems. A necessary optimality condition of Pontryagin type is obtained, where the novelty is in that mixed control-state constraints are present. The proof uses an abstract Lagrange multiplier theorem, and the main difficulty is to obtain regularity of the Lagrange multipliers in the particular problem at hand.

متن کامل

Bivariate Lagrange Interpolation at the Chebyshev Nodes

We discuss Lagrange interpolation on two sets of nodes in two dimensions where the coordinates of the nodes are Chebyshev points having either the same or opposite parity. We use a formula of Xu for Lagrange polynomials to obtain a general interpolation theorem for bivariate polynomials at either set of Chebyshev nodes. An extra term must be added to the interpolation formula to handle all poly...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Optimization Letters

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2012